\(\int \frac {1}{\sqrt {e \csc (c+d x)} (a+a \sec (c+d x))} \, dx\) [296]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 99 \[ \int \frac {1}{\sqrt {e \csc (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {2 \cot (c+d x)}{a d \sqrt {e \csc (c+d x)}}-\frac {2 \csc (c+d x)}{a d \sqrt {e \csc (c+d x)}}+\frac {4 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{a d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \]

[Out]

2*cot(d*x+c)/a/d/(e*csc(d*x+c))^(1/2)-2*csc(d*x+c)/a/d/(e*csc(d*x+c))^(1/2)-4*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1
/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))/a/d/(e*csc(d*x+c))^(1/2)/sin(d*x+c)
^(1/2)

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3963, 3957, 2918, 2644, 30, 2647, 2719} \[ \int \frac {1}{\sqrt {e \csc (c+d x)} (a+a \sec (c+d x))} \, dx=-\frac {2 \csc (c+d x)}{a d \sqrt {e \csc (c+d x)}}+\frac {2 \cot (c+d x)}{a d \sqrt {e \csc (c+d x)}}+\frac {4 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{a d \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}} \]

[In]

Int[1/(Sqrt[e*Csc[c + d*x]]*(a + a*Sec[c + d*x])),x]

[Out]

(2*Cot[c + d*x])/(a*d*Sqrt[e*Csc[c + d*x]]) - (2*Csc[c + d*x])/(a*d*Sqrt[e*Csc[c + d*x]]) + (4*EllipticE[(c -
Pi/2 + d*x)/2, 2])/(a*d*Sqrt[e*Csc[c + d*x]]*Sqrt[Sin[c + d*x]])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2647

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a*Cos[e +
f*x])^(m - 1)*((b*Sin[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + Dist[a^2*((m - 1)/(b^2*(n + 1))), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2918

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 3963

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {\sqrt {\sin (c+d x)}}{a+a \sec (c+d x)} \, dx}{\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = -\frac {\int \frac {\cos (c+d x) \sqrt {\sin (c+d x)}}{-a-a \cos (c+d x)} \, dx}{\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = \frac {\int \frac {\cos (c+d x)}{\sin ^{\frac {3}{2}}(c+d x)} \, dx}{a \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {\int \frac {\cos ^2(c+d x)}{\sin ^{\frac {3}{2}}(c+d x)} \, dx}{a \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = \frac {2 \cot (c+d x)}{a d \sqrt {e \csc (c+d x)}}+\frac {2 \int \sqrt {\sin (c+d x)} \, dx}{a \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{x^{3/2}} \, dx,x,\sin (c+d x)\right )}{a d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = \frac {2 \cot (c+d x)}{a d \sqrt {e \csc (c+d x)}}-\frac {2 \csc (c+d x)}{a d \sqrt {e \csc (c+d x)}}+\frac {4 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{a d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.15 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.96 \[ \int \frac {1}{\sqrt {e \csc (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {6 (2 i+\cot (c+d x)-\csc (c+d x))-4 \sqrt {1-e^{2 i (c+d x)}} (i+\cot (c+d x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},e^{2 i (c+d x)}\right )}{3 a d \sqrt {e \csc (c+d x)}} \]

[In]

Integrate[1/(Sqrt[e*Csc[c + d*x]]*(a + a*Sec[c + d*x])),x]

[Out]

(6*(2*I + Cot[c + d*x] - Csc[c + d*x]) - 4*Sqrt[1 - E^((2*I)*(c + d*x))]*(I + Cot[c + d*x])*Hypergeometric2F1[
1/2, 3/4, 7/4, E^((2*I)*(c + d*x))])/(3*a*d*Sqrt[e*Csc[c + d*x]])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 7.46 (sec) , antiderivative size = 432, normalized size of antiderivative = 4.36

method result size
default \(-\frac {\sqrt {2}\, \left (4 \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticE}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (d x +c \right )-2 \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (d x +c \right )+4 \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticE}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right )-2 \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right )+\sqrt {2}\, \cos \left (d x +c \right )-\sqrt {2}\right ) \csc \left (d x +c \right )}{a d \sqrt {e \csc \left (d x +c \right )}}\) \(432\)

[In]

int(1/(a+a*sec(d*x+c))/(e*csc(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/a/d*2^(1/2)*(4*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-cs
c(d*x+c)))^(1/2)*EllipticE((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))*cos(d*x+c)-2*(-I*(I-cot(d*x+c)+cs
c(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticF((-I*(I-cot(
d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))*cos(d*x+c)+4*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc
(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticE((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))
-2*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2
)*EllipticF((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))+2^(1/2)*cos(d*x+c)-2^(1/2))/(e*csc(d*x+c))^(1/2)
*csc(d*x+c)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.88 \[ \int \frac {1}{\sqrt {e \csc (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {2 \, {\left (\sqrt {\frac {e}{\sin \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 1\right )} + \sqrt {2 i \, e} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {-2 i \, e} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )\right )}}{a d e} \]

[In]

integrate(1/(a+a*sec(d*x+c))/(e*csc(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2*(sqrt(e/sin(d*x + c))*(cos(d*x + c) - 1) + sqrt(2*I*e)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d
*x + c) + I*sin(d*x + c))) + sqrt(-2*I*e)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) - I*sin
(d*x + c))))/(a*d*e)

Sympy [F]

\[ \int \frac {1}{\sqrt {e \csc (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {\int \frac {1}{\sqrt {e \csc {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {e \csc {\left (c + d x \right )}}}\, dx}{a} \]

[In]

integrate(1/(a+a*sec(d*x+c))/(e*csc(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(e*csc(c + d*x))*sec(c + d*x) + sqrt(e*csc(c + d*x))), x)/a

Maxima [F]

\[ \int \frac {1}{\sqrt {e \csc (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {1}{\sqrt {e \csc \left (d x + c\right )} {\left (a \sec \left (d x + c\right ) + a\right )}} \,d x } \]

[In]

integrate(1/(a+a*sec(d*x+c))/(e*csc(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(e*csc(d*x + c))*(a*sec(d*x + c) + a)), x)

Giac [F]

\[ \int \frac {1}{\sqrt {e \csc (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {1}{\sqrt {e \csc \left (d x + c\right )} {\left (a \sec \left (d x + c\right ) + a\right )}} \,d x } \]

[In]

integrate(1/(a+a*sec(d*x+c))/(e*csc(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(e*csc(d*x + c))*(a*sec(d*x + c) + a)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {e \csc (c+d x)} (a+a \sec (c+d x))} \, dx=\int \frac {\cos \left (c+d\,x\right )}{a\,\sqrt {\frac {e}{\sin \left (c+d\,x\right )}}\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \]

[In]

int(1/((a + a/cos(c + d*x))*(e/sin(c + d*x))^(1/2)),x)

[Out]

int(cos(c + d*x)/(a*(e/sin(c + d*x))^(1/2)*(cos(c + d*x) + 1)), x)